Online Self-Paced Crash Courses on Trending Skills & Jobs. GenAI Prompts can be Tailored on Demand and Shared on WhatsApp.
NLP
نیچرل لینگویج پروسیسنگ کا ارتقاء: 1960 کی دہائی سے آج تک کا سفر
نیچرل لینگویج پروسیسنگ (NLP) نے گزشتہ چھ دہائیوں میں ایک غیر معمولی تبدیلی دیکھی ہے۔ ابتدائی اصول پر مبنی نظاموں سے لے کر جدید ترین AI ماڈلز جیسے ChatGPT تک، NLP مختلف تمثیلوں کے ذریعے تیار ہوا ہے، جس نے نمایاں طور پر متاثر کیا ہے کہ انسان مشینوں کے ساتھ کیسے تعامل کرتے ہیں۔ یہ بلاگ 1960 کی دہائی سے لے کر آج تک NLP کے تاریخی منظر نامے کا سراغ لگاتا ہے، جس میں اہم سنگ میل اور تکنیکی ترقی کو نمایاں کیا گیا ہے۔
1960-1970 کی دہائی: اصول پر مبنی نظام اور علامتی AI
NLP کا سفر 1960 کی دہائی میں اصول پر مبنی نقطہ نظر اور علامتی AI کے ساتھ شروع ہوا۔ ابتدائی کامیابیوں میں سے ایک ELIZA (1966) تھی، جو ایک سادہ چیٹ بوٹ جوزف وائزنبام نے تیار کیا تھا جس نے پیٹرن سے مماثل اصولوں کا استعمال کرتے ہوئے انسانی گفتگو کو نقل کیا تھا۔ تاہم، اصول پر مبنی نظام ابہام سے نمٹنے میں محدود تھے اور اس کے لیے وسیع دستی کوشش کی ضرورت تھی۔
1970 کی دہائی میں، تحقیق نے رسمی گرامر اور نحوی تجزیہ پر توجہ مرکوز کی، جس میں چومسکی کی تخلیقی گرائمر ابتدائی NLP ماڈلز کو متاثر کرتی ہے۔ تاہم، ان طریقوں نے معنوی تفہیم اور حقیقی دنیا کی زبان کی مختلف حالتوں کے ساتھ جدوجہد کی۔
1980-1990 کی دہائی: شماریاتی NLP اور مشین لرننگ
1980 کی دہائی نے اصول پر مبنی نظاموں کے زوال اور شماریاتی طریقوں کے عروج کو نشان زد کیا۔ پوشیدہ مارکوف ماڈلز (HMMs) اور پارٹ آف اسپیچ (POS) ٹیگنگ کے تعارف نے NLP کو امکانی تقسیم کو شامل کرنے اور ڈیٹا پر مبنی طریقوں کی طرف بڑھنے کی اجازت دی۔
1990 کی دہائی کے دوران، مشین سیکھنے کی تکنیکوں نے خاص طور پر n-gram ماڈلز اور امکانی تجزیہ کے ساتھ کرشن حاصل کیا۔ بڑے پیمانے پر تشریح شدہ کارپورا، جیسے Penn Treebank، نے محققین کو حقیقی دنیا کے لسانی ڈیٹا پر ماڈلز کی تربیت دینے کے قابل بنایا۔ اسی وقت، شماریاتی مشینی ترجمہ (SMT) پر IBM کے کام نے خودکار زبان کے ترجمہ کی راہ ہموار کی۔
چیٹ جی پی ٹی تیار کردہ اور گوگل ترجمہ شدہ
اے کھٹانہ
Data Science and AI for All
“Data Science and AI for All” is a concept that emphasizes making data science and artificial intelligence accessible, understandable, and usable by everyone, regardless of their technical background or expertise. The goal is to democratize these fields so that individuals, businesses, and communities can leverage data-driven insights and AI technologies to solve problems, innovate, and improve decision-making.
Here are some key aspects of making Data Science and AI accessible to all:
1. Education and Training
- Beginner-Friendly Resources: Provide free or affordable online courses, tutorials, and books for beginners (e.g., Coursera, edX, Kaggle, or freeCodeCamp).
- Coding for Non-Coders: Teach programming languages like Python and R in a way that is easy to understand for non-technical audiences.
- AI Literacy: Introduce basic AI concepts, such as machine learning, neural networks, and natural language processing, in simple terms.
- Workshops and Bootcamps: Offer hands-on training sessions to help people apply data science and AI techniques to real-world problems.
2. Tools and Platforms
- No-Code/Low-Code AI Tools: Platforms like Google AutoML, Microsoft Power BI, and Tableau allow users to build models and analyze data without writing code.
- Open-Source Libraries: Encourage the use of open-source tools like TensorFlow, PyTorch, and Scikit-learn, which are free and widely supported.
- Cloud-Based Solutions: Cloud platforms like AWS, Google Cloud, and Azure provide scalable and affordable access to AI and data science tools.
3. Real-World Applications
- Industry-Specific Solutions: Showcase how data science and AI can be applied in various fields, such as healthcare, finance, education, agriculture, and entertainment.
- Social Impact Projects: Use AI and data science to address global challenges like climate change, poverty, and healthcare accessibility.
- Personal Use Cases: Teach individuals how to use AI for personal productivity, such as automating tasks or analyzing personal data.
4. Ethics and Responsibility
- Bias and Fairness: Educate people about the ethical implications of AI, including bias in algorithms and the importance of fairness.
- Transparency: Promote explainable AI (XAI) so that users can understand how AI systems make decisions.
- Data Privacy: Teach the importance of protecting personal data and complying with regulations like GDPR.
5. Community and Collaboration
- Open Data Initiatives: Encourage governments and organizations to share datasets for public use.
- Hackathons and Competitions: Host events where people can collaborate on data science and AI projects.
- Online Communities: Foster forums, social media groups, and platforms like GitHub for knowledge sharing and collaboration.
6. Inclusivity
- Diversity in AI: Ensure that people from all backgrounds, genders, and cultures are represented in the development and use of AI.
- Accessibility for Disabled Individuals: Design AI tools and resources that are usable by people with disabilities.
Examples of “Data Science and AI for All” Initiatives:
- Google’s AI for Everyone: A free course designed to teach non-technical individuals about AI.
- Kaggle Learn: Free tutorials and datasets for beginners to practice data science and machine learning.
- AI4ALL: A nonprofit organization focused on increasing diversity and inclusion in AI.
- DataCamp for Classrooms: Free access to data science courses for educators and students.
By making data science and AI accessible to all, we can empower individuals and organizations to harness the power of data and AI to drive innovation, solve complex problems, and create a more equitable and informed world.
Gram Panchayat
Health and Fitness- Ram Verma
The Healing Magic of Deep Breathing in Hindi-Crash Course
Ram Verma– Click to view Latest/ Popular videos and explore other Crash Courses from Playlists
How Not to Die: Discover the Foods Scientifically Proven to Prevent and Reverse Disease
by Michael Greger M.D. FACLM (Author), Gene Stone (Author)
A fascinating topic! “How Not to Die” is a book by Dr. Michael Greger that explores the science behind dietary patterns and their impact on our mortality. The book presents a comprehensive guide to preventing chronic diseases, such as heart disease, diabetes, and cancer, through a plant-based diet and lifestyle changes. Dr. Greger cites thousands of scientific research studies to provide actionable advice on how to drastically reduce one’s risk of premature death. By adopting a whole-food, plant-based diet, you can significantly improve your overall health and well-being.
Crash Courses
Health Dr Sarin for Liver
Dr Shiv Sarin
Liver
BT Health collection
Own Your Body
by Dr. Shiv K Sarin (Author)
Dr. A.S. Sarin is a renowned liver specialist with extensive experience in the field of gastroenterology and hepatology. He has expertise in treating a wide range of liver conditions, including liver cirrhosis, liver failure, and liver cancer. Dr. Sarin is also well-versed in performing liver biopsies and transplants. Patients seeking his consultation can expect personalized care and evidence-based treatment plans tailored to their specific needs.
Health & Fitness-Little Sports
Crash Courses
Improve Fitness
Flexibility Exercises
Strength Exercises
Exercises to Grow Taller
Daily Exercise
Little Sports– Crash Courses
Health & Fitness-Heart
Crash Courses
Heart Attack Series
Health Education
Heart Treatment
Jadoo Diet
saaol
saaol heart centre
SAAOL Heart Center– Crash Courses